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1 Introduction

The detection of non-gravitational cold dark matter (DM) interactions is an important

goal that drives some aspects of modern particle physics, cosmology and astrophysics.

The well-measured abundance of dark matter [1] does not specify the origin or specific

nature of DM. In particle physics, when the DM particle masses are comparable to the

electroweak scale (mχ ∼ v) there are two distinct (well-motivated) possibilities.1 The first

one, is the weakly interacting massive particle (WIMP) framework, in which the initially

thermalized abundance of WIMPs is reduced via their weak annihilation, starting at the

particles freeze out temperatures Tf ∼ 0.05mχ [2, 3]. The second possibility (the super-

WIMP) postulates that the DM particles have an interaction rate much weaker than the

weak interactions. In this case, one assumes that the initial cosmological abundance of

such particles is small, and that the rate for their direct production from thermal SM

states, controlled by the square of the super-WIMP coupling ySW, remains small relative

to the Hubble expansion rate throughout the entire history of the Universe. The ratio

of the super-WIMP thermalization rate to the Hubble rate at the weak scale, Γth/H ∼
10−4 y2

SW × (MPl/weak scale), gives a crude estimate for the resulting number densities

of elecroweak scale super-WIMPs weighted by entropy. Observations require this ratio be

. 10−12, which sets the benchmark value for the super-WIMP coupling, ySW . 10−12. The

stability of electroweak scale super-WIMPs would have to be ensured by some parity in

the dark sector.

While the WIMP framework gives hope to the goal of direct detection of DM [4–6] (see

however [7]), electroweak scale super-WIMPs would necessarily have a very tiny interaction

strength that generally cannot lead to direct detection. Conversely, indirect signatures of

DM, such as energetic gamma-rays, positrons and anti-protons, may be created by either

1Of course, it is also possible that nature could correspond to the parameter space between two extremes

of WIMPs and super-WIMPs and/or have multiple DM states of each type.
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WIMPs or super-WIMPs, provided that the latter decay with a lifetime longer than the

age of the Universe.

The recent claim by the PAMELA collaboration2 [14] of an excess in the positron

fraction above 10 GeV, is broadly in agreement with expectations for WIMP annihila-

tion [15–21] or WIMP/super-WIMP decay [22, 23] leading to an excess positron flux above

the background of secondary positron production. Even though an astrophyiscal origin of

this signal (unrelated to dark matter) is not ruled out, there have been numerous attempts

to link the PAMELA positron excess to dark matter. Various analyses of the positron

flux [24–27] find that the PAMELA result can be fit to models of dark matter, provided

that the annihilation and/or decay rate to positrons satisfy the following criteria:

WIMP annihilation : 〈σv〉e+ ∼ O(3 × 10−24 cm3s−1) ×
( mχ

500 GeV

)2
(1.1)

WIMP/super−WIMP decay : Γe+ ∼ O(10−51 GeV) × mχ

1 TeV
, (1.2)

where mχ is the mass of decaying/annihilating particles. One should keep in mind that

these estimates have uncertainties both due to their dependence on the modeling of the

propagation of positrons in the galaxy (see [28, 29] for a discussion) and due to uncer-

tainties in the local dark matter energy density. In addition, PAMELA has also reported

the measured flux of anti-protons [30], which is well described by standard astrophysical

production of anti-protons [31].

While the annihilation rate in eq. (1.1) of WIMPs inside our galaxy is naively in conflict

with the abundance-derived rate of 〈σv〉Tf
≃ 3 × 10−26 cm3s−1, it has been argued that

this may not necessarily be the case [32–34], as significant enhancement factors are possible

due to resonance annihilation and/or v−1 enhancement from the long-range attraction in

the dark matter sector.3 This can boost the galactic annihilation rate far above 〈σv〉Tf
. As

no excess in the anti-proton flux is reported, the positron excess suggests mostly leptonic

channels of annihilation and small rates of decay to quark-antiquark pairs for the DM.

As a “boost factor” of size 10 − 103 needed for the interpretation of the PAMELA re-

sults via WIMP annihilation may be accomplished in many ways through model-building,

an explanation via the decays of WIMPs or super-WIMPs may seem more ad hoc. In order

to obtain the decay width of 10−51 GeV in eq. (1.2), one would typically introduce a decay

constant ydecay ∼ 10−25−10−23, such that Γdecay ∝ y2
decay×(weak scale)/16π2. Such a cou-

pling is twenty orders of magnitude smaller than a typical WIMP coupling and more than

ten orders orders of magnitude smaller than the upper bound on the super-WIMP cou-

pling. Although possible, such an option is not appealing, yet in most of the decay scenarios

discussed in the literature, such a coupling is introduced by hand to fit the PAMELA data.

In this note, we consider the generic possibility when there are more than one super-

WIMP states present in the DM sector, and the decay of one state to another is kine-

matically allowed. Such a decay can happen only in the second order of the super-weak

2As well as the more recent claim by the ATIC collaboration of an electron excess at higher energies [8]

and other past hints of energetic electron/positron excess in the galaxy at high energies [9–13].
3Other recent works motivated by PAMELA data include [35–45]
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coupling constant, and can be naturally suppressed down to the level given by eq. (1.2):

(superWIMP)1 → (superWIMP)2 + SM particles, Γ ∼ O(y4
SW). (1.3)

The forth order of the superweak coupling, O(y4
SW), is necessary a tiny number not far

from 10−50, which may lead to a natural realization of the O(10−51 GeV) decay width.

We demonstrate this scenario realized in a supersymmetric Standard Model (MSSM)

with exact R-parity conservation extended with right-handed (RH) neutrino superfields and

Dirac (or nearly Dirac) neutrino masses. In this model one identifies the Yukawa couplings

in the neutrino sector yν ∼ 10−(12−13) with ySW [46–48]. Analyzing the model, we find

that the excess of energetic positrons and electrons may naturally arize from the decay of

one RH sneutrino species into another ν̃1
R → ν̃2

R ℓ
+ ℓ−, and that for certain domains of the

parameter space the production of anti-protons is inhibited. This particular realization of

the decaying super-WIMP scenario is the subject of this paper.

2 Naturally unstable SUSY DM candidates

The spectrum of supersymmetric particles depends on the nature of supersymmetry break-

ing generating the soft masses of the MSSM Lagrangian. Currently, there is no over-

whelming reason to adhere to any particular scheme of SUSY breaking; the only objective

restriction on the SUSY-breaking mass pattern comes from the resulting phenomenology.

Thus, the charged lightest supersymmetric particle (LSP) is ruled out due to the desire for

a natural DM candidate, and a nearly exact R-parity is required to keep the LSP stable if it

is to be the DM. Many WIMP candidates such as left-handed sneutrinos are disfavored [49]

due to direct detection constraints.

However, in order to accommodate the observed neutrino oscillations4 the SM should

be supplemented with right handed neutrinos νi
R. The corresponding MSSM contains

right-handed neutrino superfields that include both the fermionic right-handed neutrinos

and their scalar partners, the right-handed sneutrinos ν̃i
R. Further, any choice of scale for

the Majorana mass for the RH neutrinos is technically natural, which leaves the Yukawa

couplings in the neutrino sector a free parameter that can be varied in a wide range

10−13 . yi
ν . 1. If neutrino masses are Dirac (or nearly Dirac) then the Yukawa couplings

are close to the lower end of this range, and the ν̃i
R obtain the dominant contribution to

their masses from the soft SUSY breaking mass terms in the MSSM; two of the ν̃i
R masses,

resulting mostly from these mass terms, could be the LSP and the NLSP.

Super-WIMP DM made up of ν̃i
R was investigated recently in [46–48] and found to be

a viable option.5 Indeed, ν̃i
R are in some ways a very promising candidate for DM in the

galactic halo: they can have the right relic abundance [46–48], and represents cold, neutral,

colourless particles that do not interfere either with primordial nucleosynthesis or stellar

evolution. Obviously, ν̃i
R DM is consistent with limits on the self-interactions of DM and

4See [50] for a review of the experimental evidence of neutrino oscillation and [51] for a recent discussion

of the theoretical formulation of neutrino oscillation.
5Decays of sneutrinos through R-parity violation was considered as a source of the PAMELA excess

in [52].
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leaves no detectable signal in direct detection searches [53, 54] as their interactions are sup-

pressed by yν .

Despite these facts, one could question the phenomenological consequences of light

Dirac-like neutrino masses due to the required smallness of the yukawa coupling. The

SM Yukawa couplings already have a hierarchy of 106 between the smallest and largest

Yukawas. This hierarchy, although puzzling, does not lead to problems with technical

naturalness as chiral symmetry is restored in the limit of vanishing Yukawa couplings.

The Yukawa couplings for Dirac neutrinos are very small O(10−13), which leads to an

even larger Yukawa coupling hierarchy but are likewise technically natural. Further, Dirac

neutrinos may not have lepton number violation which disfavors some forms of leptogenesis6

as candidate theories for generating the observed matter-antimatter asymmetry of the

Universe. However, many alternatives for baryogenesis exist such as electroweak MSSM

baryogenesis [56], the Affleck-Dine mechanism [57], or an effective modification of the EW

phase transition [58–60].

The benefits of ν̃i
R as DM arguably outweighs the theoretical costs for the reason

mentioned in the introduction. If the PAMELA data is to be explained through the decay

of a particle, then the decay width must be smaller than the width corresponding to the

age of the universe ΓU = τ−1
U ∼ 10−42 GeV. Such small widths are challenging to naturally

produce for weak scale WIMPs. On the other hand, in our scenario the small decay width

is linked to another very small number, namely y4
ν ∼ (10−13)4, which is an interesting

possibility.7 One can immediately see that the decay widths are such that Γν ≪ ΓU . These

decays would still be occurring in the galactic halo leading to a primary source of positrons

that could be the excess observed by PAMELA, and possibly explain the ATIC data as well.

2.1 Dirac ν̃i
R as LSP and NLSP

Following the initial stage of cosmological evolution, all superpartners of active SM species

(charged under gauge groups) decay to ν̃i
R on the time scales controled by Γ ∝ y2

ν ×
(weak scale), see refs. [47, 48] for details. For our scenario, it is sufficient to assume that

the population of the NLSP (ν̃1
R) is not parametrically small compared to the LSP (ν̃2

R)

due to a very mild hierarchy of Yukawa couplings.

Consider the R-parity conserving MSSM supplemented with three Dirac ν̃i
R with the

superpotential

W = yij
ν ǫα β Ĥu α L̂

j
β ν̂

i
R − µ ǫα β Ĥu α Ĥd β + · · · (2.1)

Here Ĥu,α = (Ĥ+
u , Ĥ

0
u) and Ĥd,α = (Ĥ0

d , Ĥ
−
d ) are the up and down type Higgs chiral

superfields and L̂β = (ν̂L, ℓ̂
−
L ) is the lepton chiral superfield and ǫ12 = 1. We have not

written the terms in the superpotential containing the quark and charged lepton Yukawa

couplings as they are not directly relevant to our discussion. The Yukawa interactions are

6Note that leptogenesis with dirac neutrinos can occur in some models, see [55] for example.
7This observation was made in [46], where it was pointed out that the lifetime of the excited state of

RH sneutrinos exceeds the lifetime of the Universe.
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Figure 1. The tree level decay process for ν̃1
R

→ ν̃2
R
ℓ± ℓ∓, ν̃1

R
→ ν̃2

R
ν ν and the local operator

approximation.

derived from the superpotential directly using

L =
1

2

∑

i,j

∂2W

∂φi ∂φj
ψi ψj + h.c. (2.2)

Writing out the relevant component field terms in the resulting Lagrangian one has

Lyuk = yij
ν

(

˜̄νi
R ν

j H̃0
u − ˜̄νi

R ℓ
j H̃+

u

)

− µ
(

H̃+
u H̃−

d − H̃0
u H̃

0
d

)

+ h.c+ · · · (2.3)

When the lowest lying supersymmetric particles are (ν̃i
R, ν̃

j
R) the decay of one of these

species into another can proceed via ν̃1
R → ν̃2

R ν̄
k νl or ν̃1

R → ν̃2
R ℓ̄

k ℓl. As we insist on exact

R-parity, decays of ν̃i
R to purely SM particles is forbidden, while all other supersymmetric

final states are kinematically inaccessible.

2.2 Leptonic ν̃i
R decays

The leptonic decays ν̃1
R → ν̃2

R ℓ
k ℓl proceed through Higgsino exchange8 and the rate can

be easily calculated as the function of m1, m2 and µ, while masses of the SM leptons can

be safely neglected. The amplitude is given by

iA = i(y1j
ν y2i∗

ν ) L̄j /p

p2 − µ2
Li. (2.4)

Here L is the left-handed lepton doublet, 1, 2 and j, l are flavour indicies of RH sneutrinos

and SM leptons respectively, and p is the momentum carried by the Higgsino. Since all mass

parameters are essentially free apart from the mu > m1 > m2 constraint, after quoting a

general formula, we present the answer in several different limits. If the Higgsino mass µ is

larger than the sneutrino mass scale, the Higgsino propagator can be contracted, as shown

in figure 1, and the decay is mediated at leading order in p/µ by the effective Lagrangian,

Leff =
y1j

ν y2i∗
ν

µ2
(ν̃2∗

R ∂µν̃
1
R) L̄jγµL

i, (2.5)

8We disregard the issue of mixing between Higgsinos and gauginos as the mixing cannot introduce more

than O(1) corrections.
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which is simply a product of sneutrino and left-handed lepton currents. Introducing

effective couplings y2
1 =

∑

j |y
1j
ν |2, y2

2 =
∑

j |y
2j
ν |2 and the energy release parameter

∆ = m1 − m2 one can calculate the general decay width in a straightforward manner.

One finds the result for the decay width given by

Γl+l−

y2
1y

2
2

= −∆
(

24m7
1−84∆m6

1+104∆2m5
1−50∆3m4

1−8∆4m3
1+20∆5m2

1−8∆6m1+∆7
)

6144m3
1π

3µ4
,

−
12m4

1 log
[

(m1−∆)2

m2
1

]

(m1 − ∆)4

6144m3
1 π

3 µ4
. (2.6)

This general result obscures the physics somewhat, however, recall that in our scenario

the sneutrinos are the LSP and the NLSP so necessarily the Higgsino is a larger mass scale.

Let µ = nm1 where n is an order one number (n > 1) for this reason. Further, for this decay

to occur m2 < m1 so let m2 = xm1 where x < 1, then expanding in small x one obtains

Γl+ l− =
m1 y

2
1 y

2
2

6144n4 π3

(

1 − 8x2 − 24x4 log (x) + 8x6 + O(x7)
)

. (2.7)

Thus we see that a good order of magnitude approximation for this decay width is Γl+ l− ≃
10−6 y2

1 y
2
2 m1 for the whole range of parameter space.

We also note that this decay width has a number of phenomenologically interesting

limits. For example, considering ∆ to be somewhat small on the scale of the sneutrino

masses, we derive the total decay rate into charged leptons,

Γa
l+ l− =

y2
1 y

2
2 ∆5

480π3 µ4
for ∆ ≪ m1,2 ≪ µ. (2.8)

This formula can be obtained directly from the neutron beta decay rate upon setting

me, gA → 0, and identifying GF cos θc/
√

2 → 1/(4µ2). In another kinematic regime, when

µ is very close to m1 and the energy release remains small, the rate is given by

Γb
l+ l− =

y2
1 y

2
2 ∆3

192π3 m2
1

for µ−m1 ≪ ∆ ≪ m1,2. (2.9)

Finally, if the scale of m2 is small and can be neglected, while µ remains close to m1 we

have a third limit,

Γc
l+ l− =

y2
1 y

2
2 m1

1024π3
for µ−m1, m2 ≪ m1. (2.10)

We do not require that any of the hierarchies between mass parameters m1, m2, µ used

to determine the widths Γa,b,c
l+ l−

is strickly realized in our scenario. We have determined

Γa,b,c
l+ l−

using these limits on m1, m2, µ to determine some phenomenologically interest-

ing limits of the leptonic decay width. In what follows we will use the approximation

Γl+ l− ≃ 10−6y2
1 y

2
2m1 which is a good approximation due to the physics of our scenario, (ie

a Higgsino heavier that the LSP and NLSP sneutrinos and m2 < m1).

– 6 –
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2.3 Hadronic ν̃i
R decays as a source of p̄ flux

Depending on kinematics, besides the pure leptonic decay channels, there could be other

decay channels potentially leading to energetic anti-quarks and eventually to anti-protons.

Quark-antiquark pairs cannot be produced in the sneutrino decay via the intermediate

gauge and/or Higgs bosons. The relevant part of the scalar potential that could lead to

such decays is

V = 2µ yij
ν ν̃

i
R(ν̃j

LH
0
d − ℓ̃jLH

+
d ) +

∑

k

yik
ν (yjk

ν )⋆H0
u (H0

u)⋆ν̃i
Rν̃

j
R + h.c+ · · · (2.11)

These interactions induce three- and four-body decays of RH neutrinos: ν̃1
R → ν̃2

R h(H),

ν̃1
R → ν̃2

RW
+W−(H+H−), ν̃1

R → ν̃2
R ZZ(AA), decays. To simplify our calculations, we

shall assume that tan β = 〈H0
u〉/〈H0

d 〉 is somewhat large, and the A,H,H± Higgs bosons

are heavy, so that only the decay to the lightest Higgs boson h and pairs of gauge bosons

are kinematically possible.

We concentrate on the three-body decay ν̃i
R → ν̃j

R h, which is driven by the last term

in eq. (2.11) when one of the Higgs is given a vev. The resulting decay width is

Γh = |y2
12|2

v2

8πm2
1

× vh

(

∆ +
m2

h − ∆2

2m1

)

. (2.12)

In this formula, vh is the velocity of the outgoing Higgs boson, v = 246 GeV is the SM

Higgs vev, and y2
12 is the sneutrino-flavor changing combination of the Yukawa couplings:

y2
12 ≡

∑

j

y1j
ν (y2j

ν )⋆. (2.13)

If m1 ∼ v, vh ∼ 1 and y2
12 ∼ y1y2, the two-body decay rate would dominate over the

leptonic rate by three orders of magnitude simply because of the phase space suppression

of eqs. (2.8)–(2.10) relative to eq. (2.12) is quite significant. The Higgs boson produced

in the decay fragments further to gauge bosons and heavy quarks and leptons. For SUSY

models its typical mass precludes it from decaying directly to W+W− or ZZ, and bb̄

decays are expected to dominate. Decays of this form is often encountered in neutralino

annihilation, and the corresponding yield of antiprotons from a b-quark injection has been

evaluated [61, 62]. The yield of antiprotons in the hadronization and subsequent decays

of bb̄-pairs is quite significant, exceeding 10% per annihilation/decay event with a typical

electroweak scale energy injection. Assuming an O(0.1 − 1) yield of antiprotons in the

ν̃1
R → ν̃2

R h decay, the ratio of eq. (2.12) to a typical three-body rate gives the relative

strengths of antiprotons and positrons at the injection:

Φp̄

Φe+

∼ 103 × |y2
12|2

y2
1 y

2
2

× vh. (2.14)

A recent theoretical study of the antiproton fraction [31] limits the ”boost factor” for

the annihilation of dark matter to be less than 6(40) for the annihilation of 0.1(1) TeV

particles. If we tune the model to fit PAMELA flux for positrons, this would translate into

– 7 –
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a constraint on eq. (2.14) to be smaller than 0.1-1. Consequently, one would have to require

a suppression of vh|y2
12|2/(y2

1 y
2
2) down to the level of 10−4 − 10−3. Such a suppression may

come from the smallness of the flavor-changing coupling y2
12, or may originate kinematically,

from small scale splitting, ∆ < mh. In both cases one would be able to fit PAMELA results

without overproducing antiprotons.

Note that most decays that are loop suppressed will also have the difference in flavour

decays to quarks and thus protons and anti-protons compared to leptonic decays. This is

due to the exact R parity of our scenario and the fact that only the LSP ν̃2
R is kinematically

accessible for the NLSP ν̃1
R to decay too. Loop decays with the same flavour structure exist

where the produced leptons form a loop that produces a Z/γ that subsequently decays to

hadrons. The most problematic of these decays are suppressed by

Φp̄

Φe+

∼ 103 × g2 g2
V

16π2(4 cos2(θW ))
×BR(Z → hadrons). (2.15)

and the suppression is smaller than the required 0.1-1.

2.4 Numerology

Our main result, eqs. (2.8)–(2.10) can give an excellent fit to the PAMELA data in agree-

ment with the requirement of eq. (1.2). Adopting Γl+ l− = 10−6 × y2
1 y

2
2 ×m1 as an approx-

imation for different kinematic regimes of the three-body decay rate, we conclude that the

Yukawa couplings must satisfy the following relation:

(y1 y2)
2 ∼ 10−52 =⇒ (y1 y2)

1/2 ∼ 1 × 10−13. (2.16)

Are these values for the Yukawa couplings in agreement with Dirac neutrino Yukawa

couplings suggested by the measurements of neutrino oscillations? The flavor basis in

the RH sneutrino sector and the active neutrino sector in general do not coincide and a

one-to-one connection between neutrino phenomenology and eq. (2.16) is not possible. The

flavor-changing combination of Yukawa couplings in eq. (2.12), remains uncertain and is not

necessarily related to the measured mixing angles. If further assumptions are made about

the structure of the PMNS and the VR mass matricies in a particular constrained MSSM

then the the flavour structure we have determined can be related to the PMNS mass matrix,

but this is beyond the scope of this work. No immediate connection between our determined

flavour structure and the obervable masses and mixing angles in the neutrino sector is

possible without further experimental input, but we can check the consistency of eq. (2.16)

with general expectations for the Yukawa couplings in the Dirac neutrino sector. Recall

that Dirac neutrinos obtain their masses via mν = yν〈H0
u〉 = yν v sin β/

√
2 ≃ yν×175 GeV,

as we assume tan β to be large. To estimate the possible size of the Yukawa couplings we

use the experimental determinations of the neutrino mass splitting. The difference in

masses squared of the neutrinos have been measured by the KamLAND [63] and K2K [64]

collaborations to be

[δm2
ν ]atm ≃ 2.8 × 10−3 eV2, [δm2

ν ]solar ≃ 7.9 × 10−5 eV2 (2.17)

– 8 –
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and the absolute bound on the sum of neutrino masses from WMAP is given to be
∑

mi
ν = 0.67 eV at 95% CL. (2.18)

which coincides with the limit on the heaviest neutrino mass mν < 0.7eV.

In the case of the standard hierarchy of neutrino masses the heaviest neutrino is given

by ∼
√

(δ m2
ν)atm and one finds that the largest Yukawa coupling is

yν ≃ 3.0 × 10−13

(

m2
ν

2.8 × 10−3 eV2

)1/2

, (2.19)

which is perfectly consistent with the requirement on (y1 y2)
1/2 in our scenario. Alterna-

tively, for the small neutrino mass splitting scenarios one could have Yukawa couplings

close to the value suggested by possible given cosmological bounds, yν ≃ 10−12. In either

case we see that the Yukawa couplings can realize our super-WIMP decay scenario that

produces the PAMELA, and possibly ATIC, signals for electroweak scale DM masses.

3 Discussion and conclusions

We have presented an observation that the decay rates of super-WIMPs with the rate about

ten orders of magnitude slower than the Hubble rate may originate from the transition of

one super-WIMP state into another in the second order in the super-WIMP coupling so

that Γ ∼ y4
SW × (weak scale). The resulting decay rates are just becoming possible to

probe through indirect detection of dark matter via its decay products, such as electrons,

positrons and antiprotons.

Perhaps the most interesting aspect of our model is that super-WIMP physics is ex-

tremely sensitive to the superpartner mass spectrum due to the existence of a very small

coupling ySW. If, for example, one has a mass spectrum such that mν̃2
R
< mHiggsino < mν̃1

R
,

the sequential decays ν̃1
R → Higgsino → ν̃2

R will happen with Γ ∝ y2
ν×(weak scale) ∝ 10 Hz,

which is almost instantaneous on the scale of eq. (1.2). A simple modification of the spec-

trum to mν̃1
R
< mν̃2

R
< mHiggsino was shown to leads to an enormous delay in the ν̃1

R → ν̃2
R

decay. This delay results in an overall drop in the decay rate by 25 orders of magntiude, and

makes the heavier component of the RH sneutrinos only very weakly unstable. The num-

bers, given a huge disparities of different scales involved, work remarkably well, producing

Γe+ ∼ m4
ν/(weak scale)3, which is in agreement with a putative explanation of PAMELA

(and ATIC) signals by the decaying super-WIMPs. Moreover, for a moderate splitting

between two RH sneutrino components and/or an accidental suppression of the different

flavor transition, the hadronic decays of ν̃1
R will be suppressed, which will in turn suppress

the antiproton flux created by super-WIMPs. A kinematic suppression of the antiproton

flux would imply a rather small energy splitting, ∆ < mh ∼ O(100) GeV between two

super-WIMP states. Alternatively, if both PAMELA and ATIC are to be explained in the

same way, one would have to choose ∆ close to a TeV and assume a hierarchy |y2
12|2 ≪ y2

1y
2
2

in order to suppress the antiproton flux.

One feature of our scenario may look somewhat unusual. We do not assume a complete

degeneracy of RH sneutrino masses, and in fact requite them being split by the energy
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intervals comparable to their masses. This is not possible in the context of universal

sfermion masses often employed in the SUSY literature, as any additional splitting induced

by yν is minuscule. Therefore, one would have to imagine some additional theoretical

mechanism to create such a splitting.

Although the example given in this note is quite natural, it is hardly unique. For

example, one could envisage sequential R-parity preserving decays of other super-WIMPs

featured in the SUSY literature, such as gravitinos, axinos, modul(inos) etc.

The decaying super-WIMP scenario as a tentative explanation of PAMELA and ATIC

differs from the boosted WIMP annihilation in many ways. The most notable distinction is,

of course, the early cosmology. The enhanced annihilation may lead to the nuclear-chemical

consequences such as the overproduction of 6Li [65], and to extra ionization and a diffuse

gamma background [66] produced by the annihilating WIMPs. In contrast, the decaying

DM scenario is immune to these potential problems. On the other hand, both annihilation

and decay scenarios are subject to gamma ray and synchrotron emisson constraints (for a

recent paper see [67]) coming from the central region of the galaxy where the density of

dark matter is significantly enhanced.
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